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Abstract : A parallel computation method has been proposed for the mixing and segregation of granular
mixture included in gas and liquid flows.  In this method, a three-dimensional (3D) computational volume
is decomposed into multiple sub-blocks and their geometries are represented by 3D body-fitted
coordinates.  The fluid-particle interactions are treated by two types of models: a two-way model for
liquid-solid flows and a one-way model in case of gas-solid flows. The computations of the particle
motions in the multiple sub-blocks are executed simultaneously on the basis of the distinct element
method (DEM). Since a graphic process is also executed as one of the parallel jobs, the particle
distributions can be visualized during the computations. The computational method was applied to the
gas-solid flows consisting of different diameters and densities in the horizontal and inclined cylinders
rotating around their axes. From the comparison with the experimental results, nearly uniform mixing and
particle segregation are successfully predicted in the oscillating liquid flows. In addition, it has been
indicated that the particle pathline is very effective to visualize and understand the flow patterns of the
particles with different properties. The result of the computations for the liquid-solid flows demonstrated
that the vertical segregation of the non-uniform particles is reasonably reproduced.

Keywords: parallel computation, multiblock grid, multi-phase flow, particle segregation, particle
pathline.

1. Introduction
The accurate estimation for the mixing and segregation process of granular mixture consisting of non-uniform
particles is essential in various engineering subjects related to gas-solid and liquid-solid flows. In the present study,
a parallel computation method has been developed to predict the Lagrangian behaviors of individual particles with
a distinct element method (DEM) (Cundall and Strack, 1979). A multi-block parallel computation technique
proposed for CFD (Ushijima et al., 1998) is employed to decrease computational time as well as to deal with the
complicated boundary shapes. In this technique, a three-dimensional computational volume is decomposed into
multiple sub-blocks and the computations of the particles in the sub-blocks proceed simultaneously exchanging
necessary messages concerning the particle movements and contacts among the sub-blocks. The computational
efficiency has been confirmed by applying it to the uniform particles in a horizontally rotating cylinder (Ushijima
and Nezu, 2000). In particular, in the case of liquid-solid flows, the computations for liquid and solid phases
proceed simultaneously, taking account of the interactive effects. In addition, in the present computational method,
a graphic process is also included as one of the parallel jobs to visualize the particle distributions during the
unsteady computations.

This method has been applied to the gas-solid flows in horizontal and inclined cylinders rotating around
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their axes. From the comparison with the experimental results, it has been shown that the nearly uniform mixing
and segregation of the different particles are reasonably predicted. It is also indicated that the particle pathlines
enable us to understand the flow patterns for the particles with different properties, which are closely related to
their mixing and segregation processes. Furthermore, it has been demonstrated that the vertical segregation of non-
uniform particles is successfully predicted in an oscillating liquid flow with the present method.

2. Numerical Procedure

2.1 Generation of Coordinates for Sub-blocks
A three-dimensional computational volume is decomposed into multiple sub-blocks with the suitable sections set
up by a user. Since the decomposed sub-blocks have more simplified geometry than that of the original
computational domain, the boundary shapes of the sub-blocks are accurately represented by generating three-
dimensional body-fitted coordinates (3D BFC) (Thompson et al., 1985). The 3D BFC are generated by the iterative
calculation of the following equation as done by Ushijima (1994):

(1)

where xi and xm are spatial coordinates in the physical and computational spaces respectively. In Eq. (1), subscripts
take p ≠ q and r = s, and the Einstein summation rule is applied to the terms having same subscripts twice. The
control function Pm may be utilized to adjust the mesh intervals in the physical space. The derivatives with asterisks
in Eq. (1) are evaluated with cubic spline interpolations to increase the numerical accuracy of the transformation
between two spaces (Ushijima, 1994).

2.2 Computations of Liquid Phase
The liquid flows including particles are predicted with Eulerian governing equations by a finite difference method.
The governing equations for a liquid phase consist of the ensemble-average continuity and momentum equations,
which are derived from a liquid-solid two-fluid model, together with the transport equations for turbulence energy
k and its dissipation rate e. The continuity and momentum equations (Ushijima and Nezu, 2001) are given by

(2)

(3)

The instantaneous values are separated into ensemble-average and fluctuating quantities. Thus, the velocity
components in the liquid and solid phases, bearing subscripts f and p respectively in this paper, are written as 
ufi = Ufi + u'fi and upi = Upi + u'pi. Similarly, pressure p in the liquid phase and the volumetric concentration of the
solid phase c are given by p = P + p' and C = C + c' respectively.  In Eqs. (2) and (3), Φ is given by 1 − C.  The
interactive force between two phases, Ri in Eq. (3), is calculated as the summation of the forces received by the
particles included in a computational grid cell. Thus, it is assumed that the magnitude of the cell-averaged
interactive forces are of the order of the Reynolds-averaged ones in this model, which might be improved in further
study. The transport equations for k and e are assumed to be same as those in the single phase flows, assuming that
the small scale turbulence is in the isotropic conditions.

The governing equations are discretized in the computational space on a Lagrangian scheme. The
convection terms are evaluated using LCSI method (Ushijima, 1994), in which local cubic spline functions are
applied to spatial interpolations. It has been confirmed that the accuracy of LCSI method is better than that of third-
order upwind difference method (Ushijima, 1994).
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2.3 Particle Computation with DEM
The particle motions included in the sub-blocks are solved with distinct element method (DEM). The governing
equations of solid particles consist of translational and rotational motions:

(4)

(5)

where m denotes the mass of a particle, I, the moment of inertia, x, the position vector and wp, the angular velocity
vector. The particulate flows dealt within the present study are surrounded by a gas or liquid phase. Thus, the
forces, FG, FB and FC appearing on the right hand side of Eq. (4) are the fluid-solid interactive force, buoyancy and
particle-particle (or particle-wall) contact forces, respectively. The torques, TG and TC in Eq. (5), arise from the
interaction with a surrounding fluid and from the contact with other particles and boundaries, respectively.

In the DEM, the solid particles and boundaries are treated as elastic bodies rather than rigid ones.  This
assumption allows us to calculate the interaction of many particles much efficiently, since we need to take account
of the contact forces arising from only the particles with which the object is directly in contact. The contact forces
acting on a particle are modeled by spring-dashpot mechanism and a friction slider related to the shear force. The
normal contact force FCn is calculated from the spring-dashpot model using the following relationship:

(6)

The first term on the right hand side of Eq. (6) is evaluated by the force-displacement law with normal stiffness kn

and relative displacement vector dn in the normal direction. The second term is calculated with damping constant hn

and relative normal velocity vector unr. 
The evaluation of the shear contact force FCt depends on whether the particle slides on the contacting

surface or not. Firstly, the shear contact force is calculated from the spring-dashpot model.

(7)

where kt denotes shear stiffness, dt, the relative displacement vector in tangential direction, ht, the shear damping
coefficient and utr, the relative tangential velocity vector.  In order to evaluate the relative velocity utr, relative
angular velocity is taken into account in addition to the translational velocity in the tangential direction. On the
other hand, the friction force is calculated with a Coulomb-type friction model and when the following relationship
is satisfied, a slippage occurs on the surface.

(8)

In this case, the shear contact force equals the friction force given by the right hand side of Eq. (8). Otherwise, no
slippage occurs and the shear contact force is calculated by Eq. (7). All contact forces are evaluated with the above
procedures and finally they are added up. The obtained normal contact force corresponds to FC on the right hand
side of Eq. (4), while the moment TC which appears on the right hand side of Eq. (5), is calculated from the derived
shear contact force.
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In the present multi-block computations, it is necessary to deal with the contact forces acting between two
particles included in the different two sub-blocks.  This contact usually occurs near the common boundary surface
shared by two sub-blocks. To detect such inter-block contacts correctly, near-boundary volumes are set up inside of
the shared surfaces in both sub-blocks as shown in Fig. 1. The particle properties, such as the particle position and
its diameter, included in the near-boundary volumes are exchanged through a master process between two sub-
blocks. Thus, the judgments of inter-block contacts are performed as if the exchanged near-boundary volumes are
added on the outside of the shared surfaces. In this way, the continuous evaluation of the particle contacts among
multiple sub-blocks can be maintained.

3. Application to Particulate Flows 

3.1 Experiments of Gas-Solid Flows in Rotating Cylinder
Two components among three types of particles (N3, N6 and A3), as shown in Table 1, were selected and mixed in
a cylinder rotating around its axis. The coefficients of restitution e in Table 1 were experimentally obtained. The
diameter D and axial length L of the cylinder are 50 mm and 90 mm, respectively. The rotational speed is about
0.93 revolutions per second. As indicated in the experimental conditions in Table 2, the angle q between its axis
and horizontal surface is zero (horizontal) and 6.1 degrees (inclined).
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Fig. 1. Detection of inter-block contacts.

Table 1.  Particles used in experiments.

Table 2.  Experimental conditions (inclined angle and number or particles).

Particles Material d (mm) pp (g/cm3) e
N3 nylon 3.3 1.14 0.77
N6 nylon 6.4 1.14 0.78
A3 almina 3.3 3.60 0.82

Case
H-N3A3
H-N6A3
I-N3A3
I-N6A3

q (deg)
0.0
0.0
6.1
6.1

N3
150

0
150

0

N6
0
50
0
50

A3
150
150
150
150



In the experiments, the selected particles were uniformly mixed and flatly settled in the cylinder to form the
suitable initial conditions. During the rotation, the particle distributions were recorded from above by a video
camera.

Figure 2 shows the experimental results analyzed from the video images, which indicate the typical
distributions in each case. When q = 0, N3 and A3 particles are almost uniformly mixed as shown in Fig. 2 (a),
while N6 and A3 particles are clearly separated as indicated in Fig. 2 (b). In H-N6A3, A3 particles gather on the
rising side wall, while relatively fewer N6 particles remain behind of them and they are dominantly distributed near
the both ends of the cylinder. Wightman and Muzzio (1998) reported the similar experimental results, in which the
particles with larger diameter tend to gather both ends of a rotating drum.

In the inclined rotating cylinder, in contrast to H-N3A3, N3 and A3 particles are separated as shown in 
Fig. 2 (c). The higher density A3 particles gather at the higher side of the inclined cylinder. Similar results are
obtained in I-N6A3 indicated in Fig. 2 (d), which is clearly different from H-N6A3.

3.2 Predicted Results and Particle Distributions
The present computational method has been applied to all cases in Table 2 with 4-block decomposition. The time
increment Dt is 1.0 × 10−5 sec and Young's modulus, Poisson's ratio and coefficient of friction are set at 5.0 × 104 (N/m),
0.46 and 0.4 for all particles and boundaries. Most of these parameters were determined through the experiments.
The graphic process was executed every 100 steps of particle calculation, which brought about no computational
load on the particle computations. 

The typical particle distributions obtained by the graphic process are shown in Fig. 3. Since the continuous
snapshots are saved by the graphic process, dynamic movements of the particles are actually visualized in a movie
style. The particle distributions in Fig. 3 indicate the same tendencies as observed in experiments; nearly uniform
mixing in H-N3A3 and particle segregation arising in the other cases. 
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Fig. 2. Experimental results (● = A3,    ○ = N6 or N3).

(a) H-N3A3

(c) I-N3A3 (Left is higher than right) (d) I-N6A3 (Left is higher than right)

(b) H-N6A3



3.3 Numerical Visualization with Particle Pathlines
In experiments, it is generally difficult to visualize the inside flow patterns arising in particulate flows, since
particles are usually opaque and difficult to track individual particle movements. Thus, such measurements have
been conducted by observing particle distributions only in the surface regions and taking samples at some limited
positions. On the contrary, the 'numerical experiments' as done by the present study enables us to capture the
velocity components and positions in 3D space, which can be utilized to understand the mixing and segregation
processes in the non-uniform particulate flows.

Particle pathlines, drawn for each components included in the non-uniform particles, are very effective to
capture the flow pattern indicated by different particles. The particle pathlines are obtained as the trace lines for the
time- and cell-averaged particle velocities, which correspond to the pathlines in the usual flow-visualization. Figure 4
shows the derived pathlines for all cases. In H-N3A3, as shown in Fig. 4 (a), the pathlines for N3 and A3 show the
similar patterns, which results in the uniform mixing as confirmed in the experiments. In H-N6A3, on the other

332 Parallel Computation and Numerical Visualization for Non-Uniform Particles Included in Gas and Liquid Flows

Fig. 3. Computed results (blue [black] = A3, red [gray] = N3 or N6).

(a) H-N3A3

(c) I-N3A3 (Left is higher than right) (d) I-N6A3 (Left is higher than right)

(b) H-N6A3

Fig. 4. Particle flow patterns visualized by particle pathlines (violet [black] = A3, orange [gray] = N3 or N6).

(a) H-N3A3

(c) I-N3A3 (Left is higher than right) (d) I-N6A3 (Left is higher than right)

(b) H-N6A3



hand, the pathlines of N6 extend to both ends in the cylinder, corresponding to the gathering of N6 in the area. It is
noted that the independent 'particle vortex tubes' for N3 and A3 are visualized in I-N3A3 in Fig. 4 (c). Since the
same tendency is found in I-N6A3, it is suggested that the two types of particles take independent flow patterns due
to the particle forces arising between the contact surface of their pathlines.

3.4 Granular Mixture in Oscillating Liquid Flows
The proposed computational method was applied to granular binary mixture included in an oscillating liquid flow
in a horizontal pipe. The diameter and axial length of the pipe are 50 mm and 90 mm respectively. The oscillating
flow was created by controlling the pressure boundary conditions on both ends, while periodic boundary conditions
were applied to the fluid velocity and particle movements. The non-uniform particles consist of two components;
S-particle and L-particle. The diameter and specific gravity of the S-particle are 2 mm and 2.0 respectively, while
those of the L-particle are 3 mm and 2.0. The number of S- and L-particles are 1,067 and 533 in the computational
volume.

In the initial condition, the granular mixture is randomly accumulated in a horizontal pipe in a static flow
field as shown in Fig. 5 (a). The computational volume was separated into four sub-blocks as shown in Fig. 5 (a).
The computations for liquid and solid phases in each sub-block are assigned to one PC. Thus four PCs were used to
calculate both phases in four sub-domains, while another PC was applied to the graphic process.

In the present numerical experiment, pressure gradient was given to the initial condition to make the liquid
phase flow in an axial direction. The pressure gradient between both ends is altered when the axial velocity
component at the center of the pipe has reached 1.5 m/s. The solid particle leaving from one end enters again on
the other end having the same velocity and same position on the circular section.

The results of the unsteady computation are shown in Figs. 5 (b)-(d). The L-particles with a larger diameter
are localized near the surface region of the accumulated particles as shown in Figs. 5 (b)-(d). In addition, the height
of the accumulated particles, which was nearly flat in the initial condition as shown in Fig. 5 (a), gradually
deformed in the axial direction like sand waves. The predicted particle segregation agrees well with the tendency
generally observed in granular mixture in liquid flows.

4. Concluding Remarks
A multi-block parallel computational method has been proposed to predict Lagrangian behaviors of particulate
flows on the basis of DEM. A 3D computational volume is decomposed into multiple subdomains and the
computations of particles proceed simultaneously. Therefore, this computational technique allows us to deal with a
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Fig. 5. Predicted particle distributions in liquid flows (green = L-particles, orange = S-particles).

(a) Initial particle distribution (t / T = 0)

(c) Distribution of particles (t / T = 3.33) (d) Distribution of particles (t / T = 3.51)

(b) Distribution of particles (t / T = 3.15)



fairly complicated-shaped 3D computational domain as well as to increase the computational efficiency, in other
words, to deal with much more number of particles than usual.

The developed computational method was applied to the gas-solid flows confined in a rotating cylinder.
The axis of the cylinder is set at horizontal and inclined by 6.1 degrees from the horizontal surface.  From the
comparison with the experimental results, it has been shown that the uniform mixing and clear segregation are
successfully predicted with the present method. In addition, it has also been demonstrated that the particle
pathlines, drawn for each components in the non-uniform particles, are very effective to capture their flow patterns
and available to understand their mixing and segregation processes.

In case of the liquid-solid flows, the fluid-particle interaction is taken into account in the unsteady
computation through the message passing in parallel numerical procedures. As a result of the numerical experiment
for liquid-solid flows, it was shown that the vertical segregation of the non-uniform particles is successfully
predicted in an oscillating turbulent flow with the present method.
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